您的位置:新三板 / 融资 创业 / 动态 / 观点 > 14个月,365起融资,人工智能商业化的时机到了吗?

14个月,365起融资,人工智能商业化的时机到了吗?

2017-05-11 09:37  来源:未知 本篇文章有字,看完大约需要 分钟的时间

来源:未知

5月下旬,目前围棋世界排名第一的中国职业九段柯洁将与人工智能程序AlphaGo(阿尔法狗)进行终极对弈,尽管柯洁早已放出豪言,“我会抱必胜心态、必死信念。我一定要击败阿尔法狗”,但是此前德扑大赛中,人工智能获胜已经让部分看客有些心灰意冷,一旦柯洁失败,或许会再次加深这一悲观情绪。

当然,“文明终结”的忧虑还为时尚早,无论是世界上最强的象棋、围棋还是黑白棋程序,尚属“弱人工智能”。

在还没有到人工智能拥有自主意识的“强人工智能”时代,企业家、投资者以及创业者们可能更担心另一些现实的问题,比如,怎么把人工智能商业化。这是过去数十年人工智能一直温而不火的重要原因。

一、真正的爆发

无论是科学家的危言耸听式担忧,还是商业巨头们疯狂的攻城掠地,总之,“人工智能”已然成了这两年最火的科技热词。

创新工场创始人李开复对《财经国家周刊》记者说,“我们每个礼拜都会收到5家巨大的企业的请求,基金公司、汽车公司、管理公司、国企、甚至政府,都希望能够利用人工智能帮他们解决问题。”

要知道,人工智能的概念第一次被提出来是在61年前,尽管持续有些热度,但它在最初50多年里几乎没有得到爆发性的关注。

“人工智能”关注度爆发的导火索,或许是去年3月韩国著名围棋棋手李世石以1:4输给AlphaGo。

它让不少人错误估计了人工智能的爆发节点。就好比在1997年,名为深蓝的IBM计算机也曾经击败世界象棋冠军,但人工智能并没有从此进入人类日常生活。

李开复也曾错误地预判人工智能的技术趋势,从而导致创业失败——2000万美元的投入、100个员工,几乎全军覆没。

李开复反思道,“创新固然重要,但不是最重要的,最重要的是做有用的创新”,而判断它能否成为科技主流的重要标志,就是能否商业化。

Deep Mind创始人、AlphaGo之父杰米斯·哈萨比斯也表示,“我们发明AlphaGo,并不是为了赢得围棋比赛,我们是想为测试我们自己的人工智能算法搭建一个有效的平台,我们的最终目的是把这些算法应用到真实的世界中,为社会所服务。”

那么,人工智能商业化的时候真的到了吗,会不会又是一阵虚火?

4月25日,在JIC投资沙龙上,阿里云战略资深总监李树翀解释,“AI的基础是三个理论,第一是算法,第二是必须得有计算的支撑,第三是必须有数据作为序列或者教化算法的基础”,这三方面都在走向成熟。

2016年,百度董事长兼CEO李彦宏曾在2016贵阳大数据博览会上表达过类似观点,“越来越多的数据每天的产生,导致了我们可以利用这些数据做一些过去只有人能够做的事情,同时,计算能力越来越强大,计算的成本越来越低廉”。

出门问问创始人兼CEO李志飞则以“虚拟个人助理”为例,称“四年前跟现在相比,我们都不知道能用在哪里,手机也没有习惯”,而今天,“家庭、车等场景我们都能看得清楚,跟产业、用户的需求变得比以前更加成熟了。”

在这种情况下,毫无疑问,4月10日德扑人机大战最终以AI冷扑大师完胜,成了真正引爆AI商业化的导火索。

这是因为,围棋是一种“完全信息博弈”,比赛双方所有信息都呈现在棋盘上;而扑克和电脑游戏这些由多人对战的游戏是“不完全信息博弈”,计算机无法获知所有信息。

“不完美信息”人工智能冷扑大师的胜利,意味着在尔虞我诈、概率不确定、非完美信息需要推理和情商的游戏里,机器一样可以获胜,它最大的价值就在于赋予了人工智能商业化的可能性。

德州扑克冷扑大师和中国龙之队对决结束的时候,李开复发了一条朋友圈,“据闻AlphaGo近期即将来华和柯洁对战,其实已经不再具有科学意义了。以后我们应该更关注商业领域的人工智能,在金融、医疗、教育等领域产生商业价值。”

生活在“弱人工智能”时代的我们,还远没到担心人类会“永生”还是“灭绝”这样庞大而沉重的课题,但毫无疑问的是,人工智能的商业化时代,真的来了。

二、开始总是美好的

“中国任何浪潮来了都会来得太猛,大家都跳进去瞬间就有可能蓝海变成红海”,李开复如是说。

不出所料,浪潮之下,巨头们都闻风而来。

4月28日,百度公布了2017年第一季度未经审计的财务报告,李彦宏在财报中明确提到,百度的战略已经从“移动先行”变成“AI先行”。

同一天,刚刚上任100天的百度集团总裁兼COO陆奇,在百度与小鱼在家联合发布的搭载了百度DuerOS操作系统的视频通话机器人“分身鱼”发布会上重申,“对百度公司来讲,不光是一个搜索引擎的公司,基于AI,从现在到将来会逐渐成为一个平台,这是一个战略上和文化上的改变。”

这让人联想到,早先陆奇的到来和百度前首席科学家吴恩达的离开,在曾与吴恩达有过接触的首席科学家林晖看来,这某种程度上反映了百度对于人工智能需求的变化,从“学术派”走到了“实干派”。

随后,5月3日,据美国科技网站报道,腾讯宣布任命语音识别技术顶级专家俞栋博士为AI Lab副主任。这个2016年4月成立的人工智能实验室,现有50多位世界知名院校的AI科学家(90%为博士)与200多位应用工程师,此举或意味着腾讯在AI领域的正面回击。

相对低调的阿里巴巴事实上也在伺机而动,去年以来,阿里逐渐抛弃了AI产品头上的“云”背书,直接用“人工智能”给产品定位。

今年3月9日的阿里巴巴技术峰会上,马云推出了“NASA”计划,称面向未来20年组建强大的独立研发部门,同时点名了五大技术,机器学习、芯片、IoT、操作系统和生物识别都与人工智能相关。

随着互联网三巨头BAT的布局加速,一场真正的商业化战争,已经蓄势待发了。

根据猎云网研究院4月13日发布的《2017人工智能投融资白皮书》显示,2016年1月~2017年2月,共发生365起人工智能领域融资事件。

其中,来自投资界的数据显示,仅2017年第一季度,就有超60家人工智能公司获得了融资,金额超亿元的融资事件至少有5起。

这幅“人工智能”的“烽火狼烟图”,不禁让人联想起一年以前VR概念风头正盛的时候。

去年一季度,共有29家VR/AR公司总共获得融资超过10亿美元。

然而,仅仅一年后,市场研究公司Crunchbase5月1日发布的报告显示,今年一季度全球VR/AR的风险投资额只有2亿美元,不仅暴跌八成,而且被26家公司分食,创出了过去一年中投资的最低纪录。

AI会不会重蹈VR覆辙,还不好说,但资本一定有高潮也有低谷。更何况,即便是在当下,也并不是所有投资者都对人工智能持乐观态度。

建投华科投资股份有限公司董事总经理戴燚认为,“比尔·盖茨说有关人工智能领域的重大进步的所有预言,都已经被证明过于乐观。这一点对于22年后的今天这些投资人来说,仍然有一定的警示意义。”

在他看来,“人工智能处于初期发展阶段,对于投资、尤其是对于我们产业并购的整合者来说,可能为时尚早。”

三、小心陷阱

对于人工智能,科学家在渲染危机感,投资者在夸大它的神奇,然而创业者需要警惕:人工智能的创业路径跟过往的经验完全不同。

其中,最大的不同就是创业门槛的高低,起步资金就是最重要的一项。

“移动互联网时代让创业成本达到历史新低,一个产品经理带着一个工程师就可以零元创业”,李开复调侃到,“但AI的创业成本却达到历史新高,挖人、买数据、买机器,每一项都要投重资”,以创新工场投资的一家创业公司为例,“第一个月就花了500万买机器”。

并且,人工智能创业大部分是“B端”的,然而大多数投资公司已经习惯了投资“C端”创业者,这就决定了融资的难度。

李开复这样对《财经国家周刊》记者描述过去很长一段时间“C端”创业公司的投资模式,“给你一笔钱搞100万个用户,再给你一笔钱搞1000万个用户,再给你一笔钱开始变现,再给你一笔钱你就盈利了,再给你一笔钱你就上市了,这一定程度上成为了投资的四步曲或五步曲”,这与大多数“B端”创业者要去苦苦哀求企业级用户的门是完全不同的。

然而,矛盾之处在于,创业者要想避免被BAT碾压,最好的方式就是去寻找一个巨头不能碾压的领域,避开社交、游戏、电子支付,而“卖企业级软件给银行”、“卖解决方案给医院”等等“B端”领域,虽然BAT可能不会去做,但创业公司也很难成功。

并且,在人工智能领域创业,一个很大的问题就是“想象力不够”,导致从一开始同质化竞争就很严重。

“大家都做一样的应用,人脸识别现在大概有15个公司”,李开复反问道,“人脸识别当然有商业价值,但是需要15家公司来做吗?”

当然,作为最早一批回国创业的科学家,曾在谷歌担任高级工程师的出门问问创始人李志飞对《财经国家周刊》记者阐述了不同的看法。

“早期有一些趋同,这个不值得奇怪”,因为,“这就跟摘果子一样,最大的摘完了之后大家才会动脑筋去想,是不是可以再自己培养果子或者到另一个地方去摘,关键是后面这个产业是不是真能够进一步地升华。”

那么,创业过程中最需要注意的问题是什么?

最显而易见的一点,是要找到强需求而不是伪需求,然后判断这个强需求能不能被技术解决,同时,让场景和产业深度结合起来。

其次,脱离工程师的思维,把焦点放在用户身上。

李志飞说,“工程师的思维就是特别喜欢做一个自己觉得很牛的、技术很复杂的东西,但这个可能跟用户的需求完全不一样。”

以语音识别软件出门问问为例,李志飞说,“过去我们喜欢演示特别复杂的句子,比如一句话把‘帮我查一下附近的餐厅、人均50块钱、带wifi、带停车场的’讲完,但用户真实的习惯可能是把它分成几个短句,通过渐进式的交互去完成查询。”

此外,不要急于打造平台级技术和场景,什么都想做。

过去的创业经验告诉创业者,通过一味的“铺场景”也可以拉高估值,但是危险在于,一旦业务方向不像设想的那么顺利,就会无形中拉高B轮融资的难度,造成现金流枯竭,这对于现今需求量极大的人工智能创业尤为危险。

在这一点上,李志飞很坦诚,“我们也跟热点,这是肯定的,因为你不跟热点的话,拿不到钱”,“但是热点一定是辅助的,公司业务的核心一定要以AI技术推动,然后才会有各种各样的使用场景,如果你随着资本波动而波动的话,一定会死的很惨。”

李志飞称,“对于技术型公司,你的扩张速度要永远保证你的账上还有18个月的经费”,因为“钱是很贵的”。

除此之外,团队的协调、合伙人之间的契合度也在技术导向型公司被无限放大。这是因为,跟过去移动互联网时代的产品经理和工程师不一样,AI的工程师和产品经理的价值观和思维方式并不相同。

此时的人工智能就像襁褓中的婴儿,初来世间,走错一步路都有可能夭折,“脚踏实地”显得尤为重要。


标签

阅读了该文章的用户还阅读了

热门关键词

为您推荐

行情
概念
新股
研报
涨停
要闻
产业
国内
国际
专题
美股
港股
外汇
期货
黄金
公募
私募
理财
信托
排行
融资
创业
动态
观点
保险
汽车
房产
P2P
投稿专栏
课堂
热点
视频
战略

栏目导航

股市行情
股票
学股
名家
财经
区块链
网站地图

财经365所刊载内容之知识产权为财经365及/或相关权利人专属所有或持有。未经许可,禁止进行转载、摘编、复制及建立镜像等任何使用。

鲁ICP备17012268号-3 Copyright 财经365 All Rights Reserved 版权所有 复制必究 Copyright © 2017股票入门基础知识财经365版权所有 证券投资咨询许可证号为:ZX0036 站长统计