今年双十一前夕,马云在参观阿里巴巴双十一晚会筹备时说了这么一段话:
双 11,实际上是未来新零售时代的技术准备和大考,我们要做好面向未来和新零售时代的技术升级和准备.....
也正如马云所言,每年双十一对于中国各个电商的基础架构、运维体系、仓储系统、支付系统以及物流环节都是巨大的考验。毫不夸张地说, 每年的双十一都是一场中国电商的阅兵礼。
前几年的阅兵礼上,商品数量、交易额、销售额都是主角,不过或许从今年开始,技术将成为这场阅兵礼的真正主角,比如人工智能。
在昨晚双十一晚会上,阿里云人工智能 ET 现场表演了一个扑克魔术——现场观众从 32 张扑克牌中抽出 5 张,然后让魔术师( 这里则是 ET )猜出这五张牌的花色。
当然,这并非什么高深莫测的新颖魔术,作为一个经典魔术,理论上 32 张扑克牌分到 5 人手里要全部猜对的概率是 2400 万分之一,虽然可以通过每位观众的洗牌将可能性减少到 32 种,最后,需要魔术师(或者 ET) 利用记忆和推理能力得出结果。
而对以处理数据擅长的人工智能来说,处理这样的任务并非难事。
真正的挑战在于如何应对现场的复杂的环境,ET 在整个表演过程中展现了语音识别、语音合成、自然语言处理、图像/视频识别的超强能力,但要将这些能力在复杂的灯光、音效以及更为复杂的人的环境里充分展现出来,难度非常大,但 ET 的表演过程非常流畅。
事实上,ET 的人工智能早已渗入到阿里巴巴旗下各个平台。比如其支撑了阿里电商大脑,通过对海量数据的实施挖掘,能够为商家提供精准的客户需求,也可以为消费者提供差异化的营销和服务。同样是28岁的男性,当你搜索“娃娃”时,单身狗和已婚族看到的结果可能完全不同。
而在客服系统中,无论是阿里巴巴客户服务体系还是蚂蚁金服客服体系以及针对天猫、淘宝客户的阿里小蜜,人工智能正在从不同维度影响了阿里巴巴电商业务的变革。这也不禁令人遐想:当人工智能成为电商平台的核心竞争力时,其背后的想象空间有多大?
解决数据流动的效率
本质上说,电商是一门如何将在线零售变得有效率的艺术。零售涉及到多个环节,从商家商品上架、描述、推广到用户浏览、支付再到物流公司的配送,每个环节都在产生海量的数据,而且数据类型多种多样。大量非结构化数据,如商品页面的图片、视频,线下快递员的传感器数据等等。
另外,到了双十一这样的购物高峰期,呈现出高频、高额、高密度的应用场景 。这也引申出电商的第一个痛点: 如何解决数据流动的效率。
在回答这个问题之前,有必要了解一下人工智能的现状。人工智能自 1956 年被提出来之后,整个行业多次起伏。进入新世纪后,人工智能在以下几个领域取得突发猛进的发展:
图像/视频识别
语音识别
自然语言处理
上述三大领域的重要突破几乎都是在深度神经网络的帮助下实现的,为何这个几乎和人工智能一样「古老」的技术会重新焕发生机呢?
除了包括 Geoffrey Hinton、Yann LeCun 以及 Yoshua Bengio 等人在学术领域的多年苦心研究。还要归功于互联网提供了海量数据「喂养」的能力,基于深度学习的人工智能程序需要海量数据的输入,才能在结果输出时呈现好的结果,互联网公司天然就是个大数据公司,这也是为何当下全球人工智能主要参与者都是互联网公司(而且是大公司)的主要原因。
其次,则是计算能力的提升,特别是计算的成本大幅下降。过去训练神经网络的计算机受限于性能,制约了深度学习的研究进展,但随着云计算的发展,基于云端的海量数据能力变成了随时可取的服务,比如 Google 的 TensorFlow 以及阿里云上包括Maxcompute在内的多个内置深度学习的模块,开发者可以非常方便地将这些服务融入到自身产品中。
一方面,电商迫切需要解决数据流动效率的问题,另一方面,当下以深度学习为侧重的人工智能在数据处理方面有天然的优势,两者结合带来了效率的巨大提升。
比如图像识别,从商家上传图像直到用户最终买下这个商品,图像识别技术贯穿始终,以下是一个非常简单的流程:
商户端:商家上传图像时自动检测图像是否侵权、是否合法;
平台端:商家广告投放或推广时的图像自动匹配;
用户端:根据用户搜索关键词自动推荐相似的商品图片;
这还仅仅是图像识别技术的简单流程,就可以明显感觉到,依托基于云端的机器学习、深度学习所带来的数据处理优势,可以大幅提升电商平台的数据流动效率,而人工智能其他成熟的领域,如语音识别、自然语言处理,则从另一个角度改变着电商平台的游戏规则。
解决人沟通的效率
电商平台流动的数据中,有一部分数据很特殊却又很重要,那就是消费者与商家的沟通数据,比如用户在淘宝、天猫与商家的客服人员咨询具体商品(服务)信息,这些数据构成了在线销售的核心环节——互动。
但随着人力成本的上升,客服人员的成本也开始大幅上涨,更重要的是,作为客服的人类,无法完全实现标准化作业和无间歇工作,这也是当前电商所遇到的第二个痛点:沟通的效率。
从去年开始,聊天机器人(Chatbot)逐渐成为硅谷创业和巨头关注的热点。之所以如此火热,离不开语音识别和自然语言处理技术的快速发展。
以语音识别为例,自动语音识别(Automatic Speech Recognition ,简称ASR)其中的一个重要分支,很长一段时间里,ASR 在准确度上都无法与人类识别相媲美,而在 2010 年,ASR 在识别准确度上迎来一个拐点。
从上图的变化可以看出,2010—2015 的五年时间,ASR 准确度得到大幅提升,这种变化超过了过去 30 年到 40 年的变化。事实上,我们现在已经接近一个时刻:机器对于语音的识别能力即将超过人类。这种变化对于电商平台的最深刻影响就是或彻底改变客服的工作模式。
基于电商平台海量数据的「协同工作」 ,由此「孕育」的聊天机器人或许比你还更懂你自己,它或许能提前预知你可能遇到的问题,在没有你发起咨询时就把答案推到了你面前.....
再比如聊天机器人也可以介入售后交易处理,借助于机器学习,聊天机器人能够快速学习过去成千上万的售后服务案例,结合用户与商家的行为记录、信用记录,让机器像人一样去做复杂纠纷的准确判决将会成为现实。
对中小卖家而言,聊天机器人的诱惑力着实不小。如上文所言,聊天机器人能够减少甚至代替客服人员,这在人力成本持续走高的背景下意义重大,可以极大地节约人力成本。另外,基于智能化的客户服务体系,能够大幅提升中小企业的信息化、数据化、智能化的能力。
未来的赢家在哪里?
全球范围来看,电子商务经过 20 多年的发展,已步入一个新的十字路口。过往的 PC 互联网、移动互联网带来的红利早已结束,未来,电商平台的红利必然是技术红利,而人工智能是重中之重。
在与时俱进的算法、海量的数据以及廉价又强大的计算能力帮助下,当下以深度学习为侧重点的人工智能正走向一个新的阶段:基于云端的数据智能。
换句话说,「数据+云+智能」才是电商平台乃至互联网公司的未来,以这个角度来衡量当下的电商平台甚至互联网公司,基本也能知晓接下来 5 到 10 年的行业走势。
比如阿里巴巴,马云今年在多个场合表示,明年起不再提「电子商务」,这并非说明阿里巴巴不再重视电商业务,而是要从电商的基础层面重新出发。马云的新王牌就是阿里云。
事实上,过去几年阿里云已经成功支撑了天猫双十一购物节,从可用性和灵活性上得以充分展示,尤其在双十一晚会上,阿里云 ET 所展现的语音识别、自然语言处理以及图像识别能力令人印象深刻。这些基于云端的数据处理能力和数据智能,随着阿里云的快速发展会继续释放。
再比如亚马逊,过去几年,亚马逊一方面深耕云计算领域,另一方面又依靠机器学习、深度学习,继续完善在线购物的用户体验。更重要的是,亚马逊押宝 Echo ——这个基于语音识别、自然语言处理的家用助理性产品,所有这些技术布局和产品都在不断扩展亚马逊电商的边界,并构筑新的护城河。